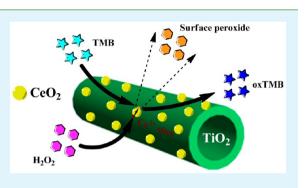
ACS APPLIED MATERIALS & INTERFACES


Highly Dispersed CeO₂ on TiO₂ Nanotube: A Synergistic Nanocomposite with Superior Peroxidase-Like Activity

Hui Zhao, Yuming Dong,* Pingping Jiang,* Guangli Wang, and Jingjing Zhang

Key Laboratory of Food Colloids and Biotechnology (Ministry of Education of China), School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China

Supporting Information

ABSTRACT: In this report, a novel nanocomposite of highly dispersed CeO₂ on a TiO₂ nanotube was designed and proposed as a peroxidase-like mimic. The best peroxidase-like activity was obtained for the CeO₂/nanotube-TiO₂ when the molar ratio of Ce/Ti was 0.1, which was much higher than that for CeO₂/nanowire-TiO₂, CeO₂/ nanorod-TiO₂, or CeO₂/nanoparticle-TiO₂ with a similar molar ratio of Ce/Ti. Moreover, in comparison with other nanomaterial based peroxidase mimics, CeO₂/nanotube-TiO₂ nanocomposites exhibited higher affinity to H₂O₂ and 3,3',5,5'-tetramethylbenzidine (TMB). Kinetic analysis indicated that the catalytic behavior was in accordance with typical Michaelis–Menten kinetics. Ce³⁺ sites were confirmed as the catalytic active sites for the catalytic reaction. The first interaction of

surface CeO_2 with H_2O_2 chemically changed the surface state of CeO_2 by transforming Ce^{3+} sites into surface peroxide species causing adsorbed TMB oxidation. Compared with $CeO_2/nanowire-TiO_2$, $CeO_2/nanorod-TiO_2$, and $CeO_2/nanoparticle-TiO_2$, the combination of TiO₂ nanotube with CeO_2 presented the highest concentration of Ce^{3+} thus leading to the best peroxidase-like activity. On the basis of the high activity of $CeO_2/nanotube-TiO_2$, the reaction provides a simple method for colorimetric detection of H_2O_2 and glucose with the detection limits of 3.2 and 6.1 μ M, respectively.

KEYWORDS: CeO_2/TiO_2 nanocomposite, peroxidase mimic, synergistic effect, H_2O_2 , glucose

INTRODUCTION

Owing to their high substrate specificity and efficiency under mild reaction conditions, natural enzymes have been widely studied and applied in biosensing, pharmaceutical processes, the food industry, agrochemical production, etc.^{1,2} However, they bear some drawbacks, such as the sensitivity of catalytic activity to environmental changes and low operational stability due to denaturation and digestion, as well as the high costs in preparation and purification.¹⁻⁴ A solution to these limitations can be provided by the rapid growth of the nanotechnology field, from which nanostructural materials have emerged as enzyme mimics due to their high surface energies and large surface-to-volume ratios. In comparison with natural enzymes, nanomaterial based enzyme mimics exhibit a high stability against harsh reaction conditions. Meanwhile, they possess additional advantages of controlled preparation at low cost, flexibility in structure design and composition, and tunable catalytic activities. To date, there have been many works on exploiting inorganic nanostructured materials as peroxidase mimics s^{5-12} mimics.5-

Among the countless examples of the nanomaterial based enzyme mimics, in order to achieve highly active nanomaterial based enzyme mimics, a new generation of composite nanomaterials with well-defined structures is particularly impressive and offers great opportunities for catalysis which takes one of the most pivotal steps toward enzyme mimicry. Nanocomposites have been proposed to realize the combination of the respective properties of each component or to achieve cooperatively enhanced performances. A variety of nanocomposites with inorganic nanomaterials incorporated with the nanoscale matrixes with a large specific surface area have been applied as enzyme mimics. Typically, gold nanoparticles/gold nanoclusters/Au–Pd bimetallic nanopar-ticles–graphene hybrids^{13–16} and a gold nanoparticles–carbon nanotube nanocomplex¹⁷ were exploited with peroxidase-like catalytic activity. However, their practical applications are highly limited due to high cost of noble metal. It is known that many low-cost and common metal oxide nanostructures, such as Fe_3O_4 nanoparticles,¹⁸ Co₃O₄ nanoparticles,¹⁹ CuO nano-clusters,²⁰ and V₂O₅ nanowires,²¹ have been proven to be the effective artificial peroxidase mimics. In addition, the preparation of metal oxide nanomaterials becomes controllable, and the lattice matching between metal oxides is easy to realize. Recently, much research interest has been directed toward metal oxide based composite nanomaterials. The combination of metal oxides and the special structural characteristic of composite could make their performance different from any one of the pure metal oxides. Up to now, according to our

Received:October 16, 2014Accepted:March 16, 2015Published:March 16, 2015

ACS Applied Materials & Interfaces

knowledge, the metal oxide composite nanomaterial on the metal oxide support is much less studied. The effective combination of metal oxides and the strong interaction of metal oxides can make metal oxide supported metal oxide composite nanomaterial a promising enzyme mimic. Therefore, the discovery and development of new enzyme mimics that are composed of inexpensive metal oxide composites are highly desirable.

 CeO_2 is an important rare earth metal oxide. Due to the low energy cost for the formation of extremely catalytic active oxygen vacancies and Ce^{3+} centers,²² CeO₂ has been used as an efficient catalyst itself or a subtle structural and electronic promoter in various chemical processes.²³⁻²⁶ Particularly, in biomimetic catalytic applications, besides possessing the high biocompatibility, CeO₂ is capable of mimicking the activity of several natural redox enzymes which is largely based on the $Ce^{4+} \leftrightarrow Ce^{3+}$ redox switch.²⁷⁻³² In order to effectively manipulate the Ce^{4+}/Ce^{3+} ratio, the introduction of other metal oxides has been developed as a feasible strategy.³³⁻³⁵ Titanium is the second most abundant transition metal in the Earth's crust. Titanium oxide, TiO2, has attractive properties including low cost, nontoxicity, and high stability. In the reported case of CeO2-TiO2 systems, it has been demonstrated theoretically and experimentally that Ce³⁺ sites could be effectively stabilized by the interfacial hybridization with TiO₂ support because of the energy decrease of the Ce 4f levels as a result of the mixing with the O 2p band of TiO2. 36,37 Therefore, the combination of CeO2 and TiO2 will be attractive to construct an efficient metal oxide-metal oxide enzyme mimic. More recently, $TiO_2 @CeO_x$ core-shell nanoparticles have been reported as artificial enzymes with peroxidase-like activity which is tailored by CeO2 shell thickness.38 Therefore, it is deduced that different TiO₂ supports maybe potentially affect the peroxidase-like activity of \tilde{CeO}_2 -TiO₂. Recently, the TiO₂ nanotube has been found to be a promising support because of its special structural characteristics and physicochemical properties.³⁹⁻⁴² In light of the superiority of the TiO_2 nanotube, the TiO₂ nanotube and CeO₂ nanoparticle were thus integrated into nanocomposites and developed as novel and efficient peroxidase mimics in this work. For comparison, various CeO₂/TiO₂ nanocomposites were prepared on the basis of TiO₂ nanowires, nanorods, and nanoparticle supports, respectively. Their structural characteristics and catalytic performances are evaluated. Reactive kinetics and mechanisms are investigated and discussed in detail. Additionally, we develop a new facile colorimetric method for H₂O₂ and glucose detection with the CeO₂/nanotube-TiO₂ composite as a peroxidase mimic.

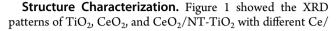
EXPERIMENTAL SECTION

Preparation. TiO_2 nanotubes were synthesized by a hydrothermal approach, which has been described in detail elsewhere.^{43,44} In brief, 5 g of TiO₂ powder (Sinopharm Chemical Reagent Co., Ltd.) was dispersed in 70 mL of 10 M NaOH and then transferred into a 100 mL Teflon-lined autoclave container. The autoclave was maintained at 140 °C under autogenous pressure for 20 h. The precipitated powder was filtered and washed with 0.1 M HNO₃ and deionized water for several times until the pH value of the rinsing solution became neutral, followed by being air-dried at 105 °C. The resulting product was denoted as NT-TiO₂.

 CeO_2/NT -TiO₂ nanocomposites were prepared by a wet-chemical deposition precipitation method. The preparation procedure is as follows. Various amounts of $Ce(NO_3)_3$ ·6H₂O were dissolved in 50 mL of distilled water and mixed with 0.01 mol of NT-TiO₂, and sufficient

NH₃·H₂O (wt %: 25%–28%) was then added under vigorous stirring to adjust the pH to about 10. After that, this mixture was stirred again for 2 h and then aged for 4 h at room temperature to facilitate the formation of dispersed cerium species on the TiO₂ surface. The resulting product was dried at 105 °C for 12 h before being annealed at 400 °C for 2 h to generate CeO₂/NT-TiO₂. The prepared nanocomposites were designated as CeO₂/NT-TiO₂@X, where X referred to the molar ratio value of Ce/Ti. CeO₂ nanoparticles, labeled as NP-CeO₂, were obtained when there was no NT-TiO₂ added.

For comparison, the different CeO₂/TiO₂ nanocomposites based on TiO₂ nanowires, nanorods, and nanoparticles were prepared by the same wet-chemical deposition precipitation method, which were marked as CeO₂/NW-TiO₂, CeO₂/NR-TiO₂, and CeO₂/NP-TiO₂, respectively. The preparation procedure of TiO₂ nanowire (NW-TiO₂) was nearly similar to that of NT-TiO₂, but the higher hydrothermal temperature of 200 °C was indispensable.^{43,44} In order to obtain the TiO₂ nanorod (NR-TiO₂) and TiO₂ nanoparticle (NP-TiO₂), the prepared NT-TiO₂ was annealed at 450 and 550 °C for 2 h, respectively.


Characterization. X-ray diffraction (XRD) patterns were recorded on an D8 X-ray diffractometer (Bruker AXS, German) at 40 kV and 40 mA using Cu K α radiation (λ = 1.5406 Å). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images were collected on a JEM-2100 (JEOL, Japan) transmission electron microscope at an accelerating voltage of 200 kV and an S-4800 (Hitachi, Japan) scanning electron microscope at an accelerating voltage of 3 kV, respectively. Energy-dispersive X-ray spectroscopy (EDX) was taken on the TEM. The Brunauer-Emmet-Teller (BET) surface area, total pore volume, and average pore sizes of sample were measured on an ASAP 2020 instrument (Micromeritics, USA) at liquid nitrogen temperature (77 K). Before measurement, the sample was degassed under vacuum condition at 200 °C for 2 h. X-ray photoelectron spectroscopy (XPS) analysis was conducted using an ESCALAB 250 Xi (Thermo, USA) X-ray photoelectron spectrometer with Al K α line as the excitation source (h ν = 1484.6 eV). Raman spectra were recorded on a confocal microscopic Raman spectrometer (Renishow In-Via, USA) with a 785 nm laser light irradiation from 100 to 1100 cm⁻¹ at a duration time of 10 s. Before analysis, the samples with and without H2O2 treatment were pressed into slices. UV-vis absorption spectra were recorded on a TU-1901 spectrophotometer (Beijing Purkinje General, China) with a 0.5 cm UV cell. Fluorescence spectra of 2-hydroxyterephthalic acid were measured on a Cary Esclipse fluorescence spectrophotometer.

Assay for Catalytic Activity Study and Glucose Detection. The catalytic reaction was performed at 25 °C using 50 μ g/mL CeO₂, TiO_{2} , or CeO_{2}/TiO_{2} in a reaction volume of 4 mL of acetate buffer (50 mM, pH 4.0) with 250 μ M 3,3',5,5'-tetramethylbenzidine (TMB) as substrate and 1 mM $\mathrm{H_2O}_{\mathcal{V}}$ unless otherwise stated. The absorbance at 652 nm after 10 min or the time-dependent absorbance changes at 652 nm within 10 min were examined. The kinetic analysis of $CeO_2/$ TN-TiO₂@0.1 with TMB as substrate was performed using 50 μ g of CeO_2/TN -TiO₂@0.1 with fixed concentration of H₂O₂ (1 mM) and varying concentrations of TMB (0, 50, 100, 150, 200, 250, and 300 μ M). Similarly, the kinetic analysis with H₂O₂ as the substrate was performed using 50 μ g of CeO₂/TN-TiO₂@0.1 with fixed concentration of TMB (250 μ M) and varying concentration of H₂O₂ (0, 0.005, 0.01, 0.02, 0.05, 0.1, and 1 mM). Apparent kinetic parameters were calculated using Lineweaver-Burk plots of the double reciprocal of the Michaelis-Menten equation, $1/V = K_m/$ $V_{\rm m}(1/[S] + 1/K_{\rm m})$, where V is the initial velocity, $V_{\rm m}$ represents the maximal reaction velocity, [S] corresponds to the concentration of substrate, and K_m is the Michaelis constant.

Glucose detection was carried out as follows: First, 100 μ L of GO_x (5 mg/mL) in NaH₂PO₄ buffer (10 mM, pH 7.0) and 200 μ L of D-glucose with various concentrations in NaH₂PO₄ buffer (10 mM, pH 7.0) were mixed and incubated at 37 °C for 30 min. Second, 400 μ L of TMB (5 mM, ethanol solution), 100 μ L of CeO₂/NT-TiO₂ stock solution (2.5 mg/mL), and 3200 μ L of acetate buffer (0.2 M, pH 4.0) were successively added to the glucose reaction solution. Finally, the

mixed solution was incubated at 25 $^{\circ}\mathrm{C}$ for 10 min for standard curve measurement.

RESULTS AND DISCUSSION

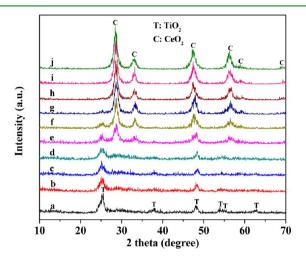


Figure 1. XRD patterns of TiO_{2} , CeO_{2} , and CeO_{2}/NT - TiO_{2} with different molar ratio. (a) NT- TiO_{2} ; (b) CeO_{2}/NT - $TiO_{2}@0.01$; (c) CeO_{2}/NT - $TiO_{2}@0.025$; (d) CeO_{2}/NT - $TiO_{2}@0.1$; (e) CeO_{2}/NT - $TiO_{2}@0.2$; (f) CeO_{2}/NT - $TiO_{2}@0.5$; (g) CeO_{2}/NT - $TiO_{2}@1$; (h) CeO_{2}/NT - $TiO_{2}@2$; (i) CeO_{2}/NT - $TiO_{2}@5$; (j) NP- CeO_{2} .

Ti molar ratios. For the prepared TiO₂ (Figure 1a) and CeO₂ (Figure 1i), the characteristic peaks at $2\theta = 25.4^{\circ}$, 37.8° , 48.5° , 54.2° , 55.4° , and 63.0° and $2\theta = 28.5^{\circ}$, 33.1° , 47.5° , 56.3° , 59.1° , and 69.4° were attributable to the anatase phase of TiO₂ (JCPDS: 02-0406) and the cubic fluorite structure of CeO₂ (JCPDS: 81-0792), respectively. CeO₂/NT-TiO₂ showed a decreasing peak intensity of TiO₂ with the increasing CeO₂ loadings (Figure 1b-i). When the Ce/Ti molar ratio is raised over 0.1 (Figure 1e-i), the reflection peaks of CeO₂ were clearly found and enhanced with the further increase of CeO₂ loadings. When the Ce/Ti molar ratio was below 0.1, no obvious CeO₂ diffraction peaks were observed from XRD patterns possibly due to the low content of CeO₂ and the well dispersed CeO₂ particles on TiO₂ nanotube surface.

Figure 2a-k presented the TEM images of TiO₂, CeO₂, and CeO_2/NT -TiO₂ with different Ce/Ti molar ratios. The TiO₂ nanotube structure (Figure 2a) and the aggregated morphology for CeO₂ (Figure 2l) were observed. The outer and inner diameters of these TiO_2 tubes were estimated to be ~10 and ~4 nm, respectively. For CeO₂/NT-TiO₂@0.01 (Figure 2b) and CeO₂/NT-TiO₂@0.025 (Figure 2c) with lower contents of CeO_2 loadings, there were some CeO_2 particles with a size of several nanometers (<5 nm) observed on the surface of TiO₂ nanotubes. When the Ce/Ti molar ratio was raised to 0.1 (Figure 2d), CeO_2 particles with a size of 5–10 nm were spread on the TiO₂ nanotube surface. However, we did not observe the aggregated CeO_2 , indicating that the presence of the TiO_2 nanotube significantly increases the dispersion of CeO2 on its surface. The HRTEM image of CeO2/NT-TiO2@0.1 (Figure 2e) showed two interplane distances of about 0.24 and 0.31 nm corresponding to the (001) plane of TiO_2 and the (111) plane of CeO₂, respectively. Figure 2f gave the EDX spectrum of CeO₂/NT-TiO₂@0.1. The Ti, Ce, and O were clearly observed,

and the atomic ratio of (Ti + Ce)/O was about 1/2 indicating the CeO_2/TiO_2 composite structure. However, the measured atomic ratio of Ce/Ti was over the atomic ratio (0.1) of the starting reagents. This was mainly due to most CeO₂ particles loaded on the TiO₂ nanotube surface leading to more Ce being detected by EDX. With the further increase of CeO₂ loadings, CeO₂/NT-TiO₂ showed a gradual agglomeration of CeO₂ on the TiO₂ surface (Figure 2g-k). The morphologies of $CeO_2/$ NT-TiO₂@2 (Figure 2j) and CeO₂/NT-TiO₂@5 (Figure 2k) were even nearly similar to that of pure CeO_2 due to the serious clustering of CeO₂ on the TiO₂ nanotube surface. In addition, the texture characteristics, including the BET surface area and pore volume, of TiO2, CeO2, and CeO2/NT-TiO2 with different Ce/Ti molar ratios were analyzed, and the results were summarized in Table 1. CeO₂ had a low BET surface area $(53 \text{ m}^2/\text{g})$ and pore volume $(0.21 \text{ cm}^3/\text{g})$ while NT-TiO₂ possessed a large BET surface area (215 m^2/g) and pore volume (0.995 cm³/g). Compared with CeO₂, CeO₂/NT-TiO₂ presents a higher BET surface area and pore volume when the Ce/Ti molar ratio was raised but not over 1, though the decreasing BET surface area and pore volume are observed for CeO_2/NT -TiO₂ with the increase of CeO₂ loading. CeO₂/NT-TiO₂@2 and CeO₂/NT-TiO₂@5 almost presented the similar texture characteristics as pure CeO₂ because of their similarly serious agglomeration morphologies as shown.

CeO₂/NW-TiO₂@0.1, CeO₂/NR-TiO₂@0.1, and CeO₂/NP- $TiO_2 @ 0.1$ nanocomposites were prepared by using TiO_2 nanowire, nanorod, and nanoparticle as support, which were confirmed by TEM and SEM images in Figure 3a-f. Similar to CeO2/NT-TiO2@0.1, CeO2 nanoparticles formed on the surfaces of TiO2 nanowire, nanorod, and nanopaticle in CeO2/NW-TiO2@0.1, CeO2/NR-TiO2@0.1, and CeO2/NP-TiO₂@0.1 nanocomposites. The insets in Figure 3a-c presented the representative HRTEM micrographs of CeO₂/ NW-TiO₂@0.1, CeO₂/NR-TiO₂@0.1, and CeO₂/NP-TiO₂@ 0.1. They all showed two interplane distances of about 0.24 and 0.31 nm which corresponded to the (001) plane of TiO_2 and the (111) plane of CeO₂, respectively. However, different from CeO₂/NT-TiO₂@0.1, CeO₂/NW-TiO₂@0.1, CeO₂/NR-TiO₂@0.1, and CeO₂/NP-TiO₂@0.1 all showed obvious XRD patterns of cubic CeO₂ structure (Figure 4). These results indicated the better dispersion of CeO₂ particles on the surface of the TiO_2 nanotube than that of the TiO_2 nanowire, nanorod, and nanoparticle. Meanwhile, in comparison with CeO₂/NW-TiO₂@0.1, CeO₂/NR-TiO₂@0.1, and CeO₂/NP-TiO₂@0.1, CeO₂/NT-TiO₂@0.1 showed the larger BET surface area (172 m^2/g) and pore volume (0.812 cm^3/g), as summarized in Table 1.

Peroxidase-Like Activity. To demonstrate the peroxidase-like activity of CeO_2/NT - $TiO_2@0.1$, catalytic oxidation of the chromogenic substrate TMB in the presence or absence of H_2O_2 was tested. The intensity of adsorption peak at 652 nm can be used to evaluate the peroxidase-like activity of the sample. As shown in Figure SA-a, almost no absorption at 652 nm was observed in the TMB + H_2O_2 system without CeO_2/NT - $TiO_2@0.1$, while the CeO_2/NT - $TiO_2@0.1$ + TMB system showed negligible adsorption at 652 nm (Figure 5A-b) under experimental conditions. In contrast, the CeO_2/NT - $TiO_2@0.1$ + TMB + H_2O_2 system produced a strong adsorption at 652 nm (Figure SA-c). These results supported that the CeO_2/NT - $TiO_2@0.1$ behaved like peroxidase toward typical peroxidase substrates such as TMB. Moreover, only weak adsorption was observed in the NP- CeO_2 + TMB + H_2O_2 system (Figure SA-

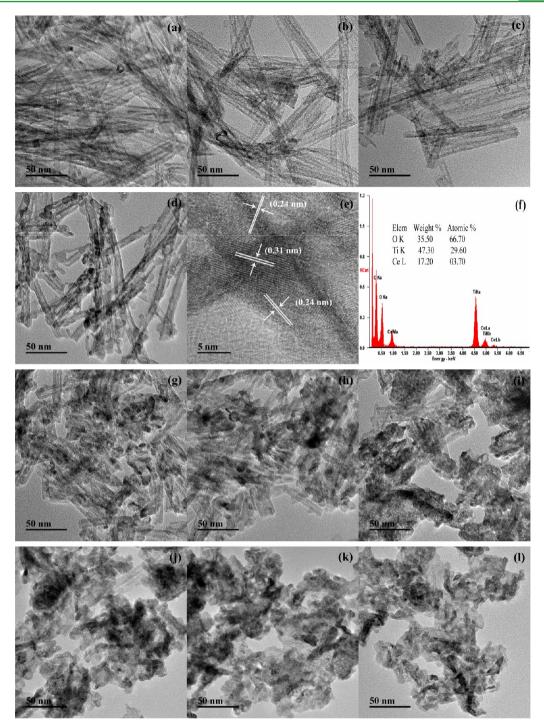


Figure 2. TEM images of TiO₂ (a), CeO₂ (l), and CeO₂/TiO₂ with different Ce/Ti molar ratios (a-d, g-l), as well as HRTEM image (e) and EDX spectrum (f) of CeO₂/NT-TiO₂@0.1, (b) CeO₂/NT-TiO₂@0.01; (c) CeO₂/NT-TiO₂@0.025; (d) CeO₂/NT-TiO₂@0.1; (g) CeO₂/NT-TiO₂@ 0.2; (h) CeO₂/NT-TiO₂@0.5; (i) CeO₂/NT-TiO₂@1; (j) CeO₂/NT-TiO₂@2; (k) CeO₂/NT-TiO₂@5.

d), and there was no adsorption at 652 nm for the NT-TiO₂ + TMB + H₂O₂ system (Figure 5A-e), indicating that the CeO₂ particles well dispersed on the NT-TiO₂ surface were responsible for the formation of the oxidation product of TMB in the CeO₂/NT-TiO₂@0.1 + TMB + H₂O₂ system. The inset showed the color variations of solutions in different reaction systems. When CeO₂/NT-TiO₂@0.1 was impregnated in TMB–acetate buffer solution for a certain time before adding H₂O₂ or the catalytic reaction was conducted under high TMB concentration, a significantly decreased catalytic efficiency was found (Figures S2 and S3, Supporting Information), which was because more TMB was adsorbed on the CeO₂/NT-TiO₂@0.1 surface inhibiting the reaction with H₂O₂. Additionally, the catalytic activity of CeO₂/NT-TiO₂@0.1 was enhanced with the increase of the H₂O₂ concentration (Figure S4, Supporting Information). Therefore, in catalytic oxidation of TMB with CeO₂/NT-TiO₂@0.1, the effective interaction of CeO₂/NT-TiO₂@0.1 with H₂O₂ was a critical step for TMB oxidation.

Table 1. Texture Characteristics of $\rm TiO_2, \ CeO_2, \ and \ CeO_2/ \ TiO_2$

catalyst	BET surface area (m^2/g)	pore volume (cm ³ /g)
NT-TiO ₂	215	0.995
CeO2/NT-TiO2@0.01	212	0.989
CeO2/NT-TiO2@0.025	209	0.940
CeO ₂ /NT-TiO ₂ @0.1	178	0.812
CeO ₂ /NT-TiO ₂ @0.2	126	0.633
CeO ₂ /NT-TiO ₂ @0.5	98	0.358
CeO ₂ /NT-TiO ₂ @1	67	0.267
CeO ₂ /NT-TiO ₂ @2	58	0.246
CeO ₂ /NT-TiO ₂ @5	57	0.232
NP-CeO ₂	53	0.231
CeO ₂ /NW-TiO ₂ @0.1	54	0.124
CeO2/NR-TiO2@0.1	91	0.540
CeO ₂ /NP-TiO ₂ @0.1	54	0.389

The peroxidase-like activity of CeO₂/NT-TiO₂ with different Ce/Ti molar ratios was investigated (Figure 5B). With the increase of CeO₂ loadings, the peroxidase-like activity of CeO₂/NT-TiO₂ was initially enhanced. When the Ce/Ti molar ratio was raised to 0.1, the highest peroxidase-like activity was obtained for CeO₂/NT-TiO₂@0.1. However, with the further increase of CeO₂ loadings, CeO₂/NT-TiO₂ showed a decreasing peroxidase-like activity. In addition, compared with CeO₂/NW-TiO₂@0.1, CeO₂/NR-TiO₂@0.1, and CeO₂/NP-TiO₂@0.1, CeO₂/NT-TiO₂@0.1 showed the highest peroxidase-like activity (Figure 5C). Their abilities followed the order of CeO₂/NT-TiO₂@0.1 > CeO₂/NR-TiO₂@0.1 > CeO₂/NP-TiO₂@0.1 > CeO₂/NP-TiO₂@0.1 > CeO₂/NP-TiO₂@0.1 > CeO₂/NP-TiO₂@0.1 > CeO₂/NP-TiO₂@0.1 > CeO₂/NP-TiO₂@0.1 = CeO₂/NP-T

Similar to peroxidase, the catalytic activity of CeO_2/NT - $TiO_2@0.1$ nanocomposites was dependent on pH and temperature. Influences of pH and temperature on the catalytic activity of CeO_2/NT - $TiO_2@0.1$ were studied (Figure S5, Supporting Information). The pH value varied from 2.6 to 8. The optimal pH was 4.0 for the maximum absorption. A

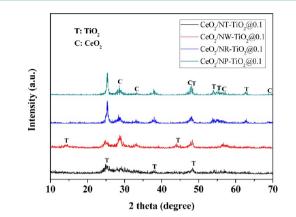


Figure 4. XRD patterns of ${\rm CeO_2/TiO_2}$ with different ${\rm TiO_2}$ morphologies.

temperature-dependent assay was also performed in this experiment. At a temperature from 15 to 75 °C, the absorbance at 652 nm first increased and then decreased after 45 °C. However, considering the convenience and economy of this catalytic process, the bioassay should be carried out at room temperature. Therefore, 25 °C was selected as the reaction temperature. To overcome the effect of possible leaching ions, the Ce and Ti ion contents of the supernatants were detected by AAS and the determined amount of Ce and Ti ions in the leaching solution is negligible. In addition, the catalytic activity of the Ce and Ti ions leached at pH 4.0 was tested as follows. The CeO₂/NT-TiO₂@0.1 nanocomposites were incubated with buffer at pH 4.0 for 10 min, and then, the supernatant solution without nanocomposites was used for the catalytic experiment. No absorbance at 652 nm (Figure S6, Supporting Information) further demonstrated that the catalytic effect did not come from leached ions but from CeO_2/NT -TiO₂@0.1.

Kinetics and Possible Reactive Mechanism. The kinetic parameters for the reaction were evaluated by the initial rate method with TMB and H_2O_2 as substrates. The absorbance

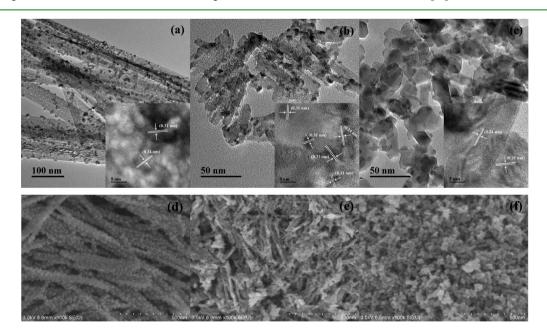
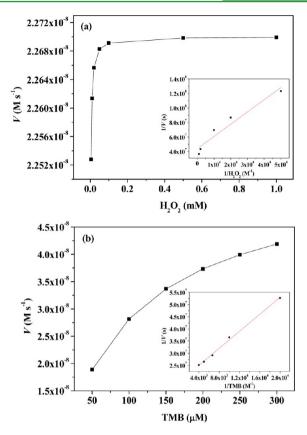
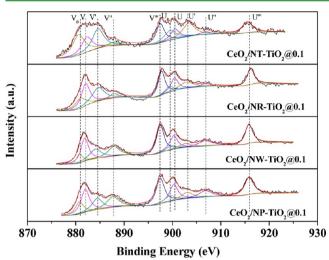



Figure 3. TEM (a-c) and SEM (d-f) images of CeO_2/TiO_2 nanocomposites with TiO_2 nanowire, nanorod, and nanoparticle as a support: (a, d) CeO_2/NW -Ti $O_2@0.1$; (b, e) CeO_2/NR -Ti $O_2@0.1$; (c, f) CeO_2/NP -Ti $O_2@0.1$.

Figure 5. (A) UV-vis spectra at reaction time of 10 min in different systems; inset is the photograph of the solution at a reaction time of 10 min in different reaction systems. (a) TMB + H_2O_2 , (b) TMB + CeO_2/NT -TiO $_2@0.1$, (c) TMB + $H_2O_2 + CeO_2/NT$ -TiO $_2@0.1$, (d) TMB + $H_2O_2 + NP$ -CeO $_2$, and (e) TMB + $H_2O_2 + NT$ -TiO $_2$ in a pH 4.0 acetate buffer at 25 °C for 10 min. (B) Relative catalytic activity TiO $_2$, CeO $_2$, and CeO $_2/TiO_2$ with different Ce/Ti molar ratios. (a) NT-TiO $_2$, (b) CeO $_2/NT$ -TiO $_2@0.01$, (c) CeO $_2/NT$ -TiO $_2@0.025$, (d) CeO $_2/NT$ -TiO $_2@0.05$, (e) CeO $_2/NT$ -TiO $_2@0.1$, (f) CeO $_2/NT$ -TiO $_2@0.2$, (g) CeO $_2/NT$ -TiO $_2@0.5$, (h) CeO $_2/NT$ -TiO $_2@0.1$, (i) CeO $_2/NT$ -TiO $_2@2$, (j) CeO $_2/NT$ -TiO $_2@0.1$, nano-composites.

data were converted to the corresponding concentration term using the value $\varepsilon = 39\,000 \text{ M}^{-1}\text{cm}^{-1}$ (at 652 nm) for the oxidized product of TMB.⁴⁵ Within the suitable range of TMB (Figure 6a) and H₂O₂ (Figure 6b) concentrations, typical

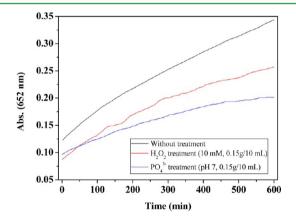

Figure 6. Steady-state kinetic analyses using the Michaelis–Menten model and Lineweaver–Burk model (insets) for CeO₂/NT-TiO₂@0.1 nanocomposite by (a) varying the concentration of TMB with a fixed amount of H_2O_2 and (b) varying the concentration of H_2O_2 with a fixed amount of TMB.

Michaelis-Menten curves were observed for CeO₂/NT-TiO₂@ 0.1 nanocomposites. The data were fitted to the Michaelis-Menten model to obtain the catalytic parameters $K_{\rm m}$ and $V_{\rm m}$ given in Table 2. All these parameters were also evaluated from the Lineweaver-Burk double-reciprocal plot,46 which gave analogous values (Figure 6a,b insets). As an apparent Michaelis–Menten constant, the $K_{\rm m}$ value with TMB as substrate for CeO2/NT-TiO2@0.1 (0.097 mM) was lower than that of HRP (0.434 mM).47 This result suggested that CeO₂/NT-TiO₂@0.1 had a higher affinity than that of HRP toward TMB. On the other hand, the $K_{\rm m}$ value of CeO₂/NT-TiO₂@0.1 with H₂O₂ as substrate was 0.04 mM, which was about 83.5 times lower than that of HRP, suggesting that a significantly lower H2O2 concentration was required for the nanocomposites than for HRP when maximum activity was obtained. Moreover, the $K_{\rm m}$ and $V_{\rm m}$ values of the CeO_2/NT-TiO₂@0.1 and other peroxidase mimics were compared, and the data was summarized in Table S1, Supporting Information. Evidently, the CeO_2/NT -TiO₂@0.1 had a much higher affinity to H_2O_2 and TMB than other mimics.

According to the previous studies on the bioapplication of cerium oxide as a peroxidase mimic, $^{28,30-32,38}$ it was prposed that the efficiency of CeO₂ artificial peroxidase-like enzyme strongly depended on the Ce⁴⁺/Ce³⁺ ratio where the low Ce³⁺/Ce⁴⁺ ratio was largely helpful. In order to evaluate the role of CeO₂ in prepared samples, high-resolution Ce 3d XPS spectra for pure CeO₂ (Figure S7, Supporting Information) and CeO₂/NT-TiO₂@0.1 were recorded (Figure 7). For pure CeO₂, the peaks at V₀, V', U₀, and U' (881.6, 884.7, 899.4, and 902.5 eV)

Table 2.	Comparison	of the Apparent	t Michaelis-Menten	Constant $(K_m$) and	d Maximum	Reaction Rate	$(V_{\rm m})$)
----------	------------	-----------------	--------------------	-----------------	-------	-----------	---------------	---------------	---

	$K_{\rm m}~({\rm mM})$		$V_{ m m}~({ m M~s^{-1}})$		
catalyst	TMB	H ₂ O ₂	TMB	H ₂ O ₂	ref.
HRP	0.434	3.70	10.0×10^{-8}	8.71×10^{-8}	32
CeO ₂ /NT-TiO ₂ @0.1	0.097	0.04	5.54×10^{-8}	2.27×10^{-8}	this work


Figure 7. High-resolution of Ce 3d XPS spectra of $CeO_2/NT-TiO_2@$ 0.1, $CeO_2/NR-TiO_2@0.1$, $CeO_2/NW-TiO_2@0.1$, and $CeO_2/NP-TiO_2@0.1$.

represented the presence of Ce³⁺ while characteristic peaks of Ce⁴⁺ presented at V, V", V"', U, U", and U"' (882.9, 888.9, 897.9, 900.9, 907.2, and 916.2 eV).^{38,48,49} In comparison with those of pure CeO₂, the characteristic peaks of Ce 3d in CeO₂/TiO₂@0.1 shifted to lower binding energy positions, which is due to the different types of screening that TiO₂ (band gap 3 eV) and CeO₂ (band gap 6 eV) can provide in the final state of the photoemission process or most probably to the presence of band bending in CeO₂/TiO₂@0.1.³⁷ The calculated concentrations of Ce³⁺ were 28.1%, 57.6%, 36.3%, 31.2%, and 29.8% in pure CeO₂, CeO₂/NT-TiO₂@0.1, CeO₂/NR-TiO₂@0.1, and CeO₂/NW-TiO₂@0.1 (Table 3), respectively. Clearly, in our work, the presence of TiO₂ supports increased the Ce³⁺ concentrations which followed the order of CeO₂/NT-TiO₂@0.1 > CeO₂/NR-TiO₂@0.1 > CeO₂/NR-

Table 3. Concentration of Ce³⁺ and Ce⁴⁺ Calculated by XPS Spectra

catalyst	concentration of $\operatorname{Ce}^{3+}(\%)^a$	concentration of $\operatorname{Ce}^{4+}(\%)^b$
CeO ₂	28.1	71.9
CeO ₂ /NT-TiO ₂ @0.1	57.6	42.4
CeO ₂ /NW-TiO ₂ @0.1	29.8	70.2
CeO ₂ /NR-TiO ₂ @0.1	36.3	63.7
CeO ₂ /NP-TiO ₂ @0.1	31.2	68.8
CeO_2/NT -TiO ₂ @0.1 treated by H_2O_2	48.4	51.6
CeO_2/NT -TiO ₂ @0.1 treated by PO_4^{2-}	43.7	56.3

^{*a*}Relative concentration of $Ce^{3+} = [A_{Ce}^{3+}/(A_{Ce}^{3+} + A_{Ce}^{4+})] \times 100\%$. ^{*b*}Relative concentration of $Ce^{4+} = [A_{Ce}^{4+}/(A_{Ce}^{3+} + A_{Ce}^{4+})] \times 100\%$; A_{Ce}^{3+} and A_{Ce}^{4+} are the total area of peaks assigned to Ce^{3+} and Ce^{4+} , respectively. tion of TiO₂ nanotube with CeO₂ presented the highest concentration of Ce³⁺, which was because CeO₂ particles were highly dispersed on TiO₂ nanotubes with increased interfacial hybridization, leading to the stabilization of more Ce³⁺.^{36–38} However, correlated with their peroxidase-like activities, it was surprisingly found that a high rather than a low Ce³⁺/Ce⁴⁺ ratio facilitated the reaction process and that the activity was positively relevant to the Ce³⁺/Ce⁴⁺ ratio. In addition, surface H₂O₂ and PO₄^{2–} treatments were adopted to diminish the Ce³⁺ species of CeO₂/NT-TiO₂@0.1.^{28,29} After H₂O₂ and PO₄^{2–} treatments, the concentrations of Ce³⁺ decreased to 48.4% and 43.7% (Table 3), respectively. Meanwhile, their peroxidase-like activities both decreased and a lower activity was found for PO₄^{2–} treated CeO₂/NT-TiO₂@0.1 with a lower Ce³⁺/Ce⁴⁺ ratio (Figure 8). These results suggested that the catalytic

Figure 8. Time-dependent absorbance changes at 652 nm of TMB for CeO_2/NT -Ti $O_2(@0.1)$ under different surface treatments. Experimental section: To acquire CeO_2/NT -Ti $O_2(@0.1)$ treated with phosphate buffered saline or H_2O_2 , 0.15 g of CeO_2/NT -Ti $O_2(@0.1)$ was incubated in 10 mL of pH 7 phosphate buffered saline (PBS) and 10 mM H_2O_2 aqueous solution under stirring for 72 and 24 h, respectively. After that, the CeO_2/NT -Ti $O_2(@0.1)$ was separated, washed, and dried.

reaction of the CeO_2/NT-TiO_2@0.1 + TMB + H_2O_2 system did not follow the reported mechanism, ^{28,30–32,38} and it was mostly centered on the surface Ce^{3+} sites and more Ce^{3+} sites were favored for activity.50-52 Raman spectra of NT-TiO2 (Figure 9a), NP-CeO₂ (Figure 9b), and CeO₂/NT-TiO₂@0.1 (Figure 9c) with and without H_2O_2 treatment were investigated. The Raman bands at 127, 153, 201, 253, 414, 473, 519, and 640 cm⁻¹ in NT-TiO₂ were assigned to the anatase structure (Figure 9a).⁵³ NP-CeO₂ displayed a strong band at 463 cm⁻¹ (Figure 9b), which had been assigned to the F_{2g} vibration mode of the O atoms around each Ce⁴⁺ cation.⁵⁴ The band at 593 cm⁻¹ was known to be associated with the oxygen vacancies.⁵⁵ CeO₂/NT-TiO₂@0.1 showed similar Raman bands at 153, 201, 253, 414, 473, 519, and 640 cm⁻¹ as NT-TiO₂₁ and no obvious Raman bands for CeO₂ were observed (Figure 9c) due to the fact that CeO₂ was well dispersed on the NT-TiO₂ surface and the signals for CeO₂ were masked by those of NT-TiO₂. For the NT-TiO₂ treated

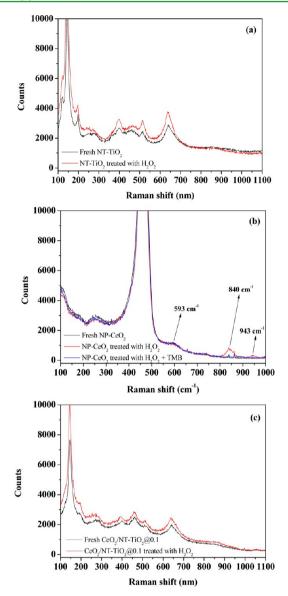


Figure 9. Raman spectra of NT-TiO₂ (a), NP-CeO₂ (b), and CeO₂/ NT-TiO₂@0.1 (c) with and without H₂O₂ treatment. Experimental section: 0.1 mL of H₂O₂ (25–28 wt %) was added into 1 g/L aqueous suspension of NT-TiO₂, NP-CeO₂, and CeO₂/NT-TiO₂@0.1 (50 mL) and then stirred vigorously for 1 h. After that, NT-TiO₂, NP-CeO₂, and CeO₂/NT-TiO₂@0.1 powders were collected by centrifugation and washed thoroughly with H₂O to obtain samples with H₂O₂ treatment.

with H_2O_2 , no obvious difference of Raman bands was found. Also, the same phenomenon was observed for CeO_2/NT - $TiO_2@0.1$ with and without H_2O_2 treatment. Due to no obvious Raman bands for surface CeO_2 active sites in the CeO_2/NT - $TiO_2@0.1$ catalyst, this result was inadequate to illustrate the reaction of surface CeO_2 with H_2O_2 . Because of the similar preparation of NP-CeO₂ and CeO₂ responsible for catalysis, the NP-CeO₂ was thus applied to investigate indirectly the reaction of surface CeO_2 with H_2O_2 in $CeO_2/$ NT- $TiO_2@0.1$. In NP-CeO₂, H_2O_2 pretreatment had not obviously decreased the Raman band at 593 cm⁻¹, which suggested that the oxygen vacancies did not disappear in the presence of H_2O_2 . Two new bands appeared at 840 and 943 cm⁻¹ in the presence of H_2O_2 , which were characteristic features of surface bidentate chelating peroxide and nonplanar bridging peroxide species, respectively.^{56–58} When TMB was added, these peaks disappeared and the blue color of TMB oxidation product appeared, which indicated that the formed surface peroxides were responsible for the oxidation of TMB. On the basis of these results, it was concluded that the first interaction of surface CeO₂ with H₂O₂ chemically changed the surface state of CeO₂ by transforming Ce³⁺ sites into surface peroxide species which resulted in adsorbed TMB oxidation in the CeO₂/NT-TiO₂@0.1 + TMB + H₂O₂ system,^{50–52} as shown in Figure 10. CeO₂/NT-TiO₂@0.1 had the highest

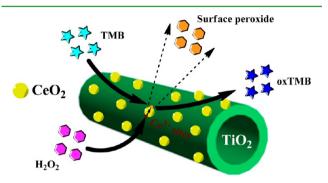
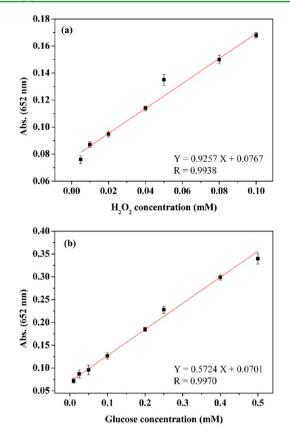



Figure 10. Schematic presentation for TMB oxidation in the presence of H_2O_2 over CeO_2/NT -TiO₂@0.1.

concentration of Ce³⁺ thus leading to the best peroxidase-like activity. At the same time, the highly dispersed CeO₂ and large BET surface area and pore volume in CeO₂/NT-TiO₂@0.1 probably helped to increase the contact of Ce³⁺ active sites with H₂O₂.⁵⁹⁻⁶¹

H₂O₂ and Glucose Detection Using CeO₂/NT-TiO₂@ **0.1.** H_2O_2 and glucose detections are two common analyses in biomedicine diagnosis.⁶² On the basis of the intrinsic peroxidase-like property of CeO₂/NT-TiO₂@0.1, we developed a simple colorimetric method to detect H₂O₂ and glucose contents using the catalyzed color reaction. As the absorbance of oxidized TMB was in proportion to H₂O₂ concentration, it was a facile approach to detect H₂O₂ at 652 nm only using a spectrophotometer. Figure 11a showed a typical H_2O_2 concentration response curve where as low as 3.2 μ M H₂O₂ could be detected with a linear range from 5 to 100 μ M. For glucose detection, glucose oxidase catalyzed the oxidation of glucose to produce gluconic acid and hydrogen peroxide in the presence of oxygen. Subsequently, the formed hydrogen peroxide was catalyzed by CeO2/NT-TiO2@0.1 and then reacted with TMB, resulting in the development of a blue color. Therefore, the color change from the converted TMB was employed to indirectly measure glucose content. Results of glucose detection were presented in Figure 11b. As illustrated, the absorbance was linearly correlated to glucose concentration from 0.01 to 0.5 mM with a detection limit of 6.1 μ M. In addition, the glucose contents in human serums (provided by the Hospital of Jiangnan University) were detected by this method, and the results were summarized in Table 4. Obviously, the concentrations of glucose examined by our method were quite close to those determined by the Automatic Biochemical Instrument (FH-400) in the Hospital of Jiangnan University. These results indicated that this method can be potentially applied to the determination of glucose content in human serums.

Figure 11. Linear calibration plot for H_2O_2 using CeO_2/NT -Ti $O_2@$ 0.1 nanocomposite as an artificial enzyme (a); linear calibration plot for glucose detection using GO_x and CeO_2/NT -Ti $O_2@0.1$ nanocomposite (b). Error bars shown represent the standard error derived from three repeated measurements. The limit of detect (LOD) was calculated by the formulation of "LOD = 3S/K", where S was the standard deviation of absorbance for blank sample and K was the slope of the calibration curve.

Table 4. Determination of Glucose Content in Human Serum Samples

relative rror (%)
1.45
1.10
1.39

CONCLUSIONS

In conclusion, we have demonstrated that CeO2/NT-TiO2 nanocomposites possess intrinsic peroxidase-like activity. When the molar ratio of Ce/Ti was 0.1, the best peroxidaselike activity was obtained, which was much higher than comparative CeO2/NW-TiO2, CeO2/NR-TiO2, and CeO2/ NP-TiO₂ nanocomposites with similar molar ratio of Ce/Ti. The presence of the TiO₂ nanotube support significantly enhanced the dispersion of surface CeO₂ as well as the surface area and pore volume. Additionally, the CeO₂/NT-TiO₂@0.1 nanocomposite exhibited higher affinity to H_2O_2 and TMB than other nanomaterial based peroxidase mimics. Ce3+ sites were confirmed as the catalytic active sites for the catalytic reaction. The first interaction of surface CeO₂ with H₂O₂ chemically changed the surface oxidation state of CeO₂ by transforming Ce3+ species into surface peroxide species that caused adsorbed TMB oxidation. Compared with CeO2/NW-

 TiO_2 , CeO_2/NR - TiO_2 , and CeO_2/NP - TiO_2 , the combination of TiO_2 nanotube with CeO_2 presented the highest concentration of Ce^{3+} thus leading to the best peroxidase-like activity. Moreover, we constructed a simple and sensitive colorimetric assay to detect H_2O_2 and glucose. This study would be significant to propel the development of novel peroxidase mimics materials as well as to provide a deep insight into the correlation between catalyst structure and peroxidaselike activity, catalytic kinetics, and the mechanism. The highly dispersed CeO_2 on the TiO_2 nanotube is expected to be useful not only in the field of peroxidase mimic but also in other promising applications such as a catalytic material.

ASSOCIATED CONTENT

Supporting Information

Table S1: Comparison of the apparent Michaelis–Menten constant (K_m) and maximal velocity (V_m) of the CeO₂/NT-TiO₂@0.1 and other peroxidase mimics. Figure S1: SEM images of TiO₂, CeO₂, and CeO₂/NT-TiO₂. Figure S2: Time-dependent absorbance changes at 652 nm of TMB under different conditions. Figure S3: Dependence of the peroxidase-like activity on TMB concentration. Figure S4: UV–vis spectra of TMB solution with different H₂O₂ concentration after 10 min. Figure S5: Dependence of the peroxidase-like activity on (a) pH and (b) temperature. Figure S6: UV–vis spectra of TMB incubating with the supernatant solution. Figure S7: High-resolution Ce 3d XPS spectra of pure CeO₂. This material is available free of charge via the Internet at http://pubs.acs. org/.

AUTHOR INFORMATION

Corresponding Authors

*Fax: +86 510 85917763. E-mail: dongym@jiangnan.edu.cn. *Fax: +86 510 85917763. E-mail: ppjiang@jiangnan.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Nos. 20903048 and 21275065), the Fundamental Research Funds for the Central Universities (JUSRP51314B, JUSRP13015), the Postgraduate Innovation Project of Jiangsu Province (CXZZ13-0743), and MOE & SAFEA for the 111 Project (B13025).

REFERENCES

(1) Chen, Y.; Cao, H.; Shi, W.; Liu, H.; Huang, Y. Fe-Co Bimetallic Alloy Nanoparticles as a Highly Active Peroxidase Mimetic and Its Application in Biosensing. *Chem. Commun.* **2013**, *49*, 5013–5015.

(2) Qiao, F.; Chen, L.; Li, X.; Li, L.; Ai, S. Peroxidase-Like Activity of Manganese Selenide Nanoparticles and Its Analytical Application for Visual Detection of Hydrogen Peroxide and Glucose. *Sens. Actuators, B* **2014**, 193, 255–262.

(3) Zhou, Y. T.; He, W.; Wamer, W. G.; Hu, X.; Wu, X.; Martin, Y.; Yin, J. J. Enzyme-Mimetic Effects of Gold@Platinum Nanorods on the Antioxidant Activity of Ascorbic Acid. *Nanoscale* 2013, *5*, 1583–1591.
(4) Gao, Z.; Xu, M.; Hou, L.; Chen, G.; Tang, D. Irregular-Shaped Platinum Nanoparticles as Peroxidase Mimics for Highly Efficient Colorimetric Immunoassay. *Anal. Chim. Acta* 2013, *776*, 79–86.

(5) Wang, G.; Xu, X.; Qiu, L.; Dong, Y.; Li, Z.; Zhang, C. Dual Responsive Enzyme Mimicking Activity of AgX (X = Cl, Br, I) Nanoparticles and Its Application for Cancer Cell Detection. ACS Appl. Mater. Interfaces **2014**, *6*, 6434–6442.

ACS Applied Materials & Interfaces

(6) Cai, K.; Lv, Z.; Chen, K.; Huang, L.; Wang, J.; Shao, F.; Wang, Y.; Han, H. Aqueous Synthesis of Porous Platinum Nanotubes at Room Temperature and Their Intrinsic Peroxidase-Like Activity. *Chem. Commun.* **2013**, *49*, 6024–6026.

(7) Shi, W.; Zhang, X.; He, S.; Huang, Y. $CoFe_2O_4$ Magnetic Nanoparticles as a Peroxidase Mimic Mediated Chemiluminescence for Hydrogen Peroxide and Glucose. *Chem. Commun.* **2011**, 47, 10785–10787.

(8) Jv, Y.; Li, B.; Cao, R. Positively-Charged Gold Nanoparticles as Peroxidiase Mimic and Their Application in Hydrogen Peroxide and Glucose Detection. *Chem. Commun.* **2010**, *46*, 8017–8019.

(9) Lien, C. W.; Huang, C. C.; Chang, H. T. Peroxidase-Mimic Bismuth-Gold Nanoparticles for Determining the Activity of Thrombin and Drug Screening. *Chem. Commun.* **2012**, *48*, 7952–7954.

(10) Hu, X.; Saran, A.; Hou, S.; Wen, T.; Ji, Y.; Liu, W.; Zhang, H.; He, W.; Yin, J. J.; Wu, X. Au@PtAg Core/Shell Nanorods: Tailoring Enzyme-Like Activities via Alloying. *RSC Adv.* **2013**, *3*, 6095–6105.

(11) Shi, W.; Wang, Q.; Long, Y.; Cheng, Z.; Chen, S.; Zheng, H.; Huang, Y. Carbon Nanodots as Peroxidase Mimetics and Their Applications to Glucose Detection. *Chem. Commun.* **2011**, 47, 6695– 6697.

(12) Song, Y.; Qu, K.; Zhao, C.; Ren, J.; Qu, X. Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection. *Adv. Mater.* **2010**, *22*, 2206–2210.

(13) Liu, M.; Zhao, H.; Chen, S.; Yu, H.; Quan, X. Interface Engineering Catalytic Graphene for Smart Colorimetric Biosensing. *ACS Nano* **2012**, *6*, 3142–3151.

(14) Liu, M.; Chen, S.; Yu, H.; Quan, X. Stimuli-Responsive Peroxidase Mimicking at a Smart Graphene Interface. *Chem. Commun.* **2012**, 48, 7055–7057.

(15) Tao, Y.; Lin, Y.; Huang, Z.; Ren, J.; Qu, X. Incorporating Graphene Oxide and Gold Nanoclusters: A Synergistic Catalyst with Surprisingly High Peroxidase-Like Activity Over a Broad pH Range and its Application for Cancer Cell Detection. *Adv. Mater.* **2013**, *25*, 2594–2599.

(16) Chen, H.; Li, Y.; Zhang, F.; Zhang, G.; Fan, X. Graphene Supported Au-Pd Bimetallic Nanoparticles with Core-Shell Structures and Superior Peroxidase-Like activities. *J. Mater. Chem.* **2011**, *21*, 17658–17661.

(17) Zhang, Y.; Xu, C.; Li, B.; Li, Y. In Situ Growth of Positively-Charged Gold Nanoparticles on Single-Walled Carbon Nanotubes as a Highly Active Peroxidase Mimetic and Its Application in Biosensing. *Biosens. Bioelectron.* **2013**, *43*, 205–210.

(18) Yu, F.; Huang, Y.; Cole, A. J.; Yang, V. C. The Artificial Peroxidase Activity of Magnetic Iron Oxide Nanoparticles and Its Application to Glucose Detection. *Biomaterials* **2009**, *30*, 4716–4722.

(19) Mu, J.; Wang, Y.; Zhao, M.; Zhang, L. Intrinsic Peroxidase-Like Activity and Catalase-Like Activity of Co_3O_4 Nanoparticles. *Chem. Commun.* **2012**, *48*, 2540–2542.

(20) Hu, L.; Yuan, Y.; Zhang, L.; Zhao, J.; Majeed, S.; Xu, G. Copper Nanoclusters as Peroxidase Mimetics and Their Applications to H_2O_2 and Glucose Detection. *Anal. Chim. Acta* **2013**, *762*, 83–86.

(21) André, R.; Natálio, F.; Humanes, M.; Leppin, J.; Heinze, K.; Wever, R.; Schröder, H. C.; Müller, W. E. G.; Tremel, W. V_2O_5 Nanowires with an Intrinsic Peroxidase-Like Activity. *Adv. Funct. Mater.* **2011**, *21*, 501–509.

(22) Campbell, C. T.; Peden, C. H. F. Oxygen Vacancies and Catalysis on Ceria Surfaces. *Science* **2005**, *309*, 713–714.

(23) Yu, X.; Kuai, L.; Geng, B. $CeO_2/rGO/Pt$ Sandwich Nanostructure: rGO-Enhanced Electron Transmission between Metal Oxide and Metal Nanoparticles for Anodic Methanol Oxidation of Direct Methanol Fuel Cells. *Nanoscale* **2012**, *4*, 5738–5743.

(24) Lee, Y.; He, G.; Akey, A. J.; Si, R.; Flytzani-Stephanopoulos, M.; Herman, I. P. Raman Analysis of Mode Softening in Nanoparticle $CeO_{2-\delta}$ and Au-CeO_{2- δ} during CO Oxidation. *J. Am. Chem. Soc.* **2011**, 133, 12952–12955. (25) Si, R.; Flytzani-Stephanopoulos, M. Shape and Crystal-Plane Effects of Nanoscale Ceria on the Activity of Au-CeO₂ Catalysts for the Water-Gas Shift Reaction. *Angew. Chem.* **2008**, *120*, 2926–2929.

(26) González-Rovira, L.; Sánchez-Amaya, J. M.; López-Haro, M.; Rio, E.; Hungría, A. B.; Midgley, P.; Calvino, J. J.; Bernal, S.; Botana, F. J. Single-Step Process To Prepare CeO₂ Nanotubes with Improved Catalytic Activity. *Nano Lett.* **2009**, *9*, 1395–1400.

(27) Korsvik, C.; Patil, S.; Seal, S.; Self, W. T. Superoxide Dismutase Mimetic Properties Exhibited by Vacancy Engineered Ceria Nanoparticles. *Chem. Commun.* **2007**, 1056–1058.

(28) Pirmohamed, T.; Dowding, J. M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A. S.; King, J. E. S.; Seal, S.; Self, W. T. Nanoceria Exhibit Redox State-Dependent Catalase Mimetic Activity. *Chem. Commun.* **2010**, *46*, 2736–2738.

(29) Heckert, E. G.; Karakoti, A. S.; Seal, S.; Self, W. T. The Role of Cerium Redox State in the SOD Mimetic Activity of Nanoceria. *Biomaterials* **2008**, *29*, 2705–2709.

(30) Celardo, I.; Pedersen, J. Z.; Traversa, E.; Ghibelli, L. Pharmacological Potential of Cerium Oxide Nanoparticles. *Nanoscale* **2011**, *3*, 1411–1420.

(31) Celardo, I.; Nicola, M. D.; Mandoli, C.; Pedersen, J. Z.; Traversa, E.; Ghibelli, L. Ce³⁺ Ions Determine Redox Dependent Anti-Apoptotic Effect of Cerium Oxide Nanoparticles. *ACS Nano* **2011**, *5*, 4537–4549.

(32) Walkey, C.; Das, S.; Seal, S.; Erlichman, J.; Heckman, K.; Ghibelli, L.; Traversa, E.; McGinnis, J. F.; Self, W. T. Catalytic Properties and Biomedical Applications of Cerium Oxide Nano-particles. *Environ. Sci.: Nano* 2015, DOI: 10.1039/C4EN00138A.

(33) Zhou, G.; Barrio, L.; Agnoli, S.; Senanayake, S. D.; Evans, J.; Kubacka, A.; Estrella, M.; Hanson, J. C.; Martinez-Arias, A.; Fernandez-Garcia, M.; Rodriguez, J. A. High Activity of $Ce_{1-x}Ni_xO_{2-y}$ for H₂ Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions. *Angew. Chem., Int. Ed.* **2010**, *49*, 9680–9684.

(34) Gionco, C.; Paganini, M. C.; Agnoli, S.; Reeder, A. E.; Giamello, E. Structural and Spectroscopic Characterization of CeO₂-TiO₂ Mixed Oxides. *J. Mater. Chem. A* **2013**, *1*, 10918–10926.

(35) Chen, L.; Si, Z.; Wu, X.; Wenig. DRIFT Study of CuO-CeO₂-TiO₂ Mixed Oxides for NO_x Reduction with NH₃ at Low Temperatures. ACS Appl. Mater. Interfaces **2014**, *6*, 8134–8145.

(36) Graciani, J.; Plata, J. J.; Sanz, J. F.; Liu, P.; Rodriguez, J. A. A Theoretical Insight into the Catalytic Effect of a Mixed-Metal Oxide at the Nanometer Level: The Case of the Highly Active Metal/CeO_x/TiO₂(110) Catalysts. *J. Chem. Phys.* **2010**, *132*, 104703.

(37) Agnoli, S.; Reeder, A. E.; Senanayake, S. D.; Hrbek, J.; Rodriguez, J. A. Structure and Special Chemical Reactivity of Interface Stabilized Cerium Oxide Nanolayers on $TiO_2(110)$. *Nanoscale* **2014**, *6*, 800–810.

(38) Artiglia, L.; Agnoli, S.; Paganini, M. C.; Cattelan, M.; Granozzi, G. $TiO_2@CeO_x$ Core-Shell Nanoparticles as Artificial Enzymes with Peroxidase-Like Activity. *ACS Appl. Mater. Interfaces* **2014**, *6*, 20130–20136.

(39) Song, Y.; Gao, Z.; Wang, J.; Xia, X.; Lynch, R. Multistage Coloring Electrochromic Device Based on TiO_2 Nanotube Arrays Modified with WO₃ Nanoparticles. *Adv. Funct. Mater.* **2011**, *21*, 1941–1946.

(40) Song, Y.; Gao, Z.; Lee, K.; Schmuki, P. A Self-Cleaning Nonenzymatic Glucose Detection System Based on Titania Nanotube Arrays Modified with Platinum Nanoparticles. *Electrochem. Commun.* **2011**, *13*, 1217–1220.

(41) Gao, Z.; Han, Y.; Li, Y.; Yang, M.; Song, Y. Photocatalytic Synthesis and Synergistic Effect of Prussian Blue-Decorated Au Nanoparticles/TiO₂ Nanotube Arrays for H_2O_2 Amperometric Sensing. *Electrochim. Acta* **2014**, *125*, 530–535.

(42) Cortes-Jácome, M. A.; Morales, M.; Chavez, C. A.; Ramírez-Verduzco, L. F.; López-Salinas, E.; Toledo-Antonio, J. A. WO_x/TiO_2 Catalysts via Titania Nanotubes for the Oxidation of Dibenzothiophene. *Chem. Mater.* **2007**, *19*, 6605–6614.

ACS Applied Materials & Interfaces

(43) Taai, C.; Teng, H. Regulation of the Physical Chatacteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment. *Chem. Mater.* **2004**, *16*, 4352–4358.

(44) Song, S.; Liu, Z.; He, Z.; Zhang, A.; Chen, J. Impacts of Morphology and Crystallite Phase of Titanium Oxide on the Catalytic Ozonation of Phenol. *Environ. Sci. Technol.* **2010**, *44*, 3913–3918.

(45) Dutta, A. K.; Maji, S. K.; Srivastava, D. N.; Mondal, A.; Biswas, P.; Paul, P.; Adhikary, B. Synthesis of FeS and FeSe Nanoparticles from a Single Source Precursor: A Study of Their Photocatalytic Activity, Peroxidase-Like Behavior, and Electrochemical Sensing of H_2O_2 . ACS Appl. Mater. Interfaces **2012**, *4*, 1919–1927.

(46) Hans, L.; Dean, B. The Determination of Enzyme Dissociation Constants. J. Am. Chem. Soc. **1934**, 56, 658–666.

(47) Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S. Intrinsic Peroxidase-Like Activity of Ferromagnetic Nanoparticles. *Nat. Nanotechnol.* **200**7, *2*, 577–583.

(48) Bêche, E.; Charvin, P.; Perarnau, D.; Abanades, S.; Flamant, G. Ce 3d XPS Investigation of Cerium Oxides and Mixed Cerium Oxide $(Ce_xTi_yO_z)$. Surf. Interface Anal. **2008**, 40, 264–267.

(49) Natile, M. M.; Glisenti, A. CoO_x/CeO₂ Nanocomposite Powders: Synthesis, Characterization, and Reactivity. *Chem. Mater.* **2005**, 17, 3403–3414.

(50) Cai, W.; Chen, F.; Shen, X.; Chen, L.; Zhang, J. Enhanced Catalytic Degradation of AO7 in the CeO_2 -H₂O₂ System with Fe³⁺ Doping. *Appl. Catal., B* **2010**, *101*, 160–168.

(51) Chen, F.; Shen, X.; Wang, Y.; Zhang, J. CeO_2/H_2O_2 System Catalytic Oxidation Mechanism Study via a Kinetics Investigation to the Degradation of Acid Orange 7. *Appl. Catal., B* **2012**, *121–122*, 223–229.

(52) Ji, P.; Wang, L.; Chen, F.; Zhang, J. Ce³⁺-Centric Organic Pollutant Elimination by CeO₂ in the Presence of H_2O_2 . ChemCatChem 2010, 2, 1552–1554.

(53) Li, Z.; Wnetrzak, R.; Kwapinski, W.; Leahy, J. J. Synthesis and Characterization of Sulfated TiO_2 Nanorods and ZrO_2/TiO_2 Nanocomposites for the Esterification of Biobased Organic Acid. ACS Appl. Mater. Interfaces **2012**, 4, 4499–4505.

(54) Twu, J.; Chuang, C. J.; Chang, K.; Yang, C. H.; Chen, K. H. Raman Spectroscopic Studies on the Sulfation of Cerium Oxide. *Appl. Catal., B* **1997**, *12*, 309–324.

(55) Spanier, J. E.; Robinson, R. D.; Zhang, F.; Chan, S. W.; Herman, I. P. Size-Dependent Properties of CeO_{2-y} Nanoparticles as Studied by Raman Scattering. *Phys. Rev. B* **2001**, *64*, 245407.

(56) Guzman, J.; Carrettin, S.; Corma, A. Spectroscopic Evidence for the Supply of Reactive Oxygen during CO Oxidation Catalyzed by Gold Supported on Nanocrystalline CeO₂. J. Am. Chem. Soc. **2005**, 127, 3286–3287.

(57) Pushkarev, V. V.; Kovalchuk, V. I.; d'Itri, J. L. Probing Defect Sites on the CeO₂ Surface with Dioxygen. J. Phys. Chem. B **2004**, 108, 5341-5348.

(58) Scholes, F. H.; Hughes, A. E.; Hardin, S. G.; Lynch, P.; Miller, P. R. Influence of Hydrogen Peroxide in the Preparation of Nanocrystalline Ceria. *Chem. Mater.* **2007**, *19*, 2321–2328.

(59) Li, H.; Lu, G.; Dai, Q.; Wang, Y.; Guo, Y.; Guo, Y. Hierarchical Organization and Catalytic Activity of High-Surface-Area Mesoporous Ceria Microspheres Prepared Via Hydrothermal Routes. *ACS Appl. Mater. Interfaces* **2010**, *2*, 836–846.

(60) Yagati, A. K.; Lee, T.; Min, J.; Choi, J.-W. An Enzymatic Biosensor for Hydrogen Peroxide Based on CeO_2 Nanostructure Electrodeposited on ITO Surface. *Biosens. Bioelectron.* **2013**, 47, 385–390.

(61) Shan, W.; Liu, F.; He, H.; Shi, X.; Zhang, C. An Environmentally-Benign CeO_2 -Ti O_2 Catalyst for the Selective Catalytic Reduction of NO_x with NH_3 in Simulated Diesel Exhaust. *Catal. Today* **2012**, *184*, 160–165.

(62) Zhou, L.; Kuai, L.; Li, W.; Geng, B. Ion-Exchange Route to Au-Cu_xOS Yolk-Shell Nanostructures with Porous Shells and Their Ultrasensitive H_2O_2 Detection. *ACS Appl. Mater. Interfaces* **2012**, *4*, 6463–6467.